Q. What is the best wear face material for my mechanical seal?

A. The reliability and safety, as well as the total life cycle cost, of mechanical seals is determined to a large extent by the choice of the face materials. Their selection will depend on the pumped or sealed fluid. The corrosion, erosion, and/or abrasion resistance and lubricity of the material, as well as the temperature, pressure and pump speed, must all be considered.

To ensure a long service life, high quality materials must be used and they must be sufficiently hard to oppose wear, resist corrosion and be capable of producing a very flat and smooth surface when lapped. The diagram in Figure 1 shows a general classification of commonly used face or sliding materials.

Most materials exhibit poor wear behavior when in sliding contact with a surface fabricated from the same material. Therefore, two dissimilar materials – one softer than the other – are usually chosen. In extremely abrasive or corrosive environments it is usually preferable to utilize two hard materials because a soft face would wear excessively and cause higher then normal leakage rates. In such applications extremely hard materials such as tungsten carbide (WC) and silicon carbide (SiC) are ideal.

In applications involving high pressures and/or large diameters, two faces fabricated from WC and/or SiC are sometimes applied to minimize the face deformations caused by the pressure forces. Although these two super-hard faces can handle quite a bit of load, it is important to realize that when two hard surfaces are chosen an important hidden compromise is made in the mechanical seal design. The compromise is that the faces will be more sensitive to damage or failure if lubrication is lost or reduced.

Tungsten and silicon carbide are two of the most common face materials and are used in a wide variety of applications. Their cost is usually higher than the pure metallic and oxide ceramic types, but their superior wear resistance results in a higher degree of reliability and longer service life. Tungsten and silicon carbide outperform the other groups decisively, particularly in harsh lubricating environments, high pressures, speeds and temperatures, or in the presence of corrosive and abrasive solids.

In clean fluids, they are usually paired with a softer carbon-graphite material. In dirty fluids or fluids containing abrasive particles, they can be paired or even matched against a surface of the same material. With the soft counter face, the maximum load capability, i.e. the “PV” (pressure x velocity limit), is the highest and even fluids with low viscosity do not pose wear problems in most applications.

Figure 2 shows nominal PV limits for different face material combinations in non-lubricating fluids and demonstrates the effectiveness of both WC and SiC when paired against a carbon face.

In a hard-versus-hard configuration, the abrasive wear resistance is maximized at the expense of a reduced load capability. In fluids with minimal lubricating qualities such as water, a hard-versus-hard combination becomes especially sensitive to rubbing wear and face damage from excessive friction.

Air or other entrained gases are potentially troublesome for any hard-versus-hard face combination. Fluids that tend to vaporize upon escape to the atmosphere are also most likely troublesome for hard-versus-hard face pairs.

In lubricating fluids, the PV limits of materials increase significantly and a rule of thumb is to multiply the values in Figure 2 by a factor of 1.5. What’s important about these values is that they are not cast in stone. PV limits are indicative of the severity of an application that materials can withstand, but do not take the design or shape of the seal face.
The PV limit of materials is degraded when the seal faces deflect too much and cause edge contact. In such cases the PV limit would be substantially reduced and thus the probability for damage would be high.

Both tungsten and silicon carbide have excellent physical properties (Figure 3) that drive the operational capabilities of a mechanical seal. Nevertheless, behavioral differences between the materials have come to light over the years and preference has gone to silicon carbide for many applications involving clean and dirty fluids.

New product and industry standard developments during the last 10 years have clearly shown a trend toward more use of silicon carbide because of its greater versatility with respect to corrosion, abrasion, and erosion resistance, as well as its lower sensitivity to face damage.

For example, the current revision of mechanical seal standard API 682 favors reaction-bonded silicon carbide as the mating surface for the majority of refinery applications. The other type of commonly used silicon carbide, sintered, is favored in the chemical industry because of its

Figure 2. Nominal PV limits for typical face materials in non-lubricating fluids.
excellent corrosion resistance. Although the most brittle, the chemical and tribological advantages of sintered SiC usually outweigh its sensitivity to fracture as compared with tungsten carbide.

Cartridge design seals offer a solution to overcome the drawback of brittleness during installation of the seal in pumps. Modern seals are designed with torque transmission features that reduce the risk of fractures during operation. Examples are square pin heads and transmission of the torque via a shrink or press fit ring in a metal housing.

Seal manufacturers have developed creative features that suppress the brittleness of silicon carbide and deal with operational or installation related events that can cause a seal face to break or crack. Also, the cost of SiC has been reduced significantly over the years and today is actually lower than WC, thereby providing greater value to the pump user.

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Carbon Graphite</th>
<th>Tungsten Carbide</th>
<th>Reaction Bonded Silicon Carbide</th>
<th>Alpha Sintered Silicon Carbide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>1.85</td>
<td>14.95</td>
<td>3.09</td>
<td>3.1</td>
</tr>
<tr>
<td>Hardness (Knoop)</td>
<td>kg/mm²</td>
<td>95 *</td>
<td>1500</td>
<td>2100</td>
<td>2800</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>MPa (psi × 10⁶)</td>
<td>48 (7)</td>
<td>896 (130)</td>
<td>307 (44.5)</td>
<td>206 (30)</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>MPa (psi × 10⁶)</td>
<td>234 (34)</td>
<td>4205 (610)</td>
<td>2000 (290)</td>
<td>3900 (560)</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>GPa (psi × 10⁶)</td>
<td>24 (3.5)</td>
<td>607 (88)</td>
<td>390 (56)</td>
<td>410 (59)</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>W/m·K (Btu/ft²·°F)</td>
<td>9 (5)</td>
<td>83 (48)</td>
<td>147 (85)</td>
<td>126 (73)</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>x10⁴ mm/mm·K (x10⁶ in/in·°F)</td>
<td>4.9 (2.7)</td>
<td>4.9 (2.7)</td>
<td>5.0 (2.8)</td>
<td>4.0 (2.2)</td>
</tr>
<tr>
<td>Max. Operating Temperature</td>
<td>°C (°F)</td>
<td>260 (500)</td>
<td>1060 (2000)</td>
<td>1370 (2500)</td>
<td>1650 (3000)</td>
</tr>
</tbody>
</table>

* Shore A Hardness

Figure 3. Physical properties of commonly used face materials.

Next Month: What is the best silicon carbide wear face material for my mechanical seal?

We invite your questions on sealing issues and will provide best efforts answers based on FSA publications. Please direct your questions to: sealingquestions@fluidsealing.com.

P&S

Don’t Leave Us Hanging!!!

Self-leveling, adjustable and reusable chocks for all rotating machinery. The Vibracon is an economical chocking system that eliminates softfoot while in the production line and for the life cycle of pumps and their drivers.

Machine Support, Inc. locations:
Virginia Beach, VA Fort Worth, TX
877-821-1777 817-361-8277
www.machinesupport.com

enter 187 at psfreeinfo.com for more info

Now it is even easier to contact our advertisers. Just go online to www.psfreeinfo.com and enter the number in the yellow box with each ad.
Improve Pump Reliability & Cut Costs!

The PUMP Handbook
The #1 Reference Series on Pump Troubleshooting, Maintenance & Reliability

This one-of-a-kind CD offers first-class coverage of virtually every aspect of pumping systems - from pump selection guidelines and pre-startup through long-term operation and maintenance strategies. It gives you access to the best thinking of many of industry’s top experts on:

- Pump Specification
- Pump and Seal Maintenance
- Pump Selection
- Repair Techniques
- Pump and Seal Troubleshooting
- Pump Operations
- Profiles of Plant Pumping Solutions
- New Insight on Technical Pump Issues

The Pump Handbook Series on CD Contains:
- Volume 1: Centrifugal Pumps
- Volume 2: Positive Displacement Pumps
- Volume 3: Mechanical Seals & Sealing Systems
- Volume 4: Pump Maintenance and Reliability
- Volume 5: Pump and System Troubleshooting

Only $195
plus $3.50 shipping & handling

visit www.pump-zone.com for complete Table of Contents

Order Today! Call (205) 212-9402
or download order form at www.pump-zone.com/handbook.php